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In order to find energetic rules for the stability of metallic phases it is advantageous to adapt the con- 
cepts for these rules in connexion with the density matrix. Four specializations of this matrix lead to 
the assumption of two lattice-like spatial correlations in a crystal, one for the valence electrons and the 
other for the outer core electrons. The commensurabilities of these two correlations to the crystal struc- 
ture give an indication of the energetic preference of a structure of a given composition and valence 
electron concentration. Since displacive transformations may be understood as an ordering of the atoms 
with respect to the core-electron correlation, an analysis of the core-electron correlation is possible on the 
basis of solved displacive crystal structures. The binding is discussed for the Cu, Mg and W families of 
structures in brass-like phases. 

Introduction 

There is no doubt that the set of atomic radii has been 
very useful not only for analysing crystal structures but 
especially for assessing the energetic preference of a 
given structure in a given mixture of chemical elements. 
Although the atomic radii for 12-coordination are de- 
termined only to one A/100, they have been reprodu- 
cibly analysed from solved crystal structures and rep- 
resent a part of our empirical knowledge on solid 
phases. The question therefore arises as to whether 
there are similar concepts which may help to assess the 
energy of a structure, and thus build up a natural sys- 
tem of structural types. 

In order to find such concepts we must look for the 
basis of the concept of energetic preference. A material 
system is described by its energy matrix (also called 

op (x~,xtz, . ,x~) are the energy operator) Uxx,, where x = .. 
(spatial and spin) coordinates numbered by i for each 
of the N particles in the system; the state of this sys- 
tem is described by a density matrix (also called density 
operator) Dx,~; and the energy expectation is calcu- 
lated as O=S~,U°~,D~,x. We consider the internal 
energy instead of the Gibbs energy, as it is the simpler 
concept, and both concepts are equivalent in the sense 
of thermodynamic transformation theory. Different 
states may have the same energy expectation, but if we 
compare states of the same volume, entropy and mole 
numbers, the realized state gives the lowest energy ex- 
pectation, i.e. the highest energetic preference. From 
the realized density matrix the atomic radius of a com- 
ponent atom may be calculated by the reduction process 
Dr]xl : = 5 x 2 x 3  • • D x l x 2  • ~x2 which gives the prob- 
ability of finding the par ticle"i in the unit volume; the 
probability of finding any particle (say electron) is 
given by ND~]x~, because of symmetry. The atomic 
radius therefore gives information on the density ma- 
trix and is thus useful for energetic arguments. How- 

ever the reduced density matrix D re is not sufficient 
X l X l  

for energy calculations as U~Px , contains members like 
1/IxI -  x~.l depending on two spatial coordinates. There- 
fore a first step in the specialization of D may be the 

use of the two particle reduced density matrix D re , 
X 1 X 2 X I X 2  

=Sx3x4...Dx~x'2x3 . . . .  xF~2x3.., which is necessary and suf- 
ficient for energy calculations. Since the energy matrix 
does not essentially depend on spin, the reduction of 
D over spins may be complete; also the nuclear par- 
ticles may be thought of as fixed. 

A second specialization step is very common: to 
compare only structures of the same kinetic energy; 
in this case only the diagonal D~,]x2 of the matrix 

Drex'x x needs to be considered" it may be called the 
1 2 1 2 '~ 

spatial correlation of the electrons; this term recalls 
that the spatial density of the electrons is insufficient 
to calculate or assess the energy. The spatial correla- 
tion is no longer a matrix but a function, although a 
function in six-dimensional space; it is this property 
which has prevented crystallographers studying it as 
closely as the atomic radii have been studied in 
the past. Strictly speaking every crystal structure must 
be described by a six-dimensional spatial correlation, 
because of the gravitational field, but this effect is not 
considerable. 

It is therefore reasonable to assume, as a third step 
of specialization of the density matrix, that the spatial 
correlation of the electrons has nearly the form 
D(x~-x~,) so that it may be approximately described 
by a three-dimensional function, which may be called 
the electron place lattice; it is clear that this neither im- 
plies nor forbids that electrons have more or less fixed 
places in a crystal structure. The electron place lattice 
is a function having a periodicity radius of 50 to 
100 A, (Schubert, 1964, p. 100). It should not be 
confused with a lattice having an infinite periodicity 
radius. 

Two essential properties should be allotted to a 
spatial correlation (Schubert, 1964) : 
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(1) The lattice-like property reducing the potential 
energy between the electrons. 

(2) The commensurability with the crystal structure 
reducing the energy between electrons and ions. 

This simple model may be named the one-correla- 
tion model; examples of its application to metallic 
structures will be given below. 

A correlation may be a product of two correlations 
when the population is divided into two subpopula- 
tions which interact less strongly than the members of 
one and the same population. Our fourth specializa- 
tion is the assumption that this possibility is realized 
in crystals with the valence electrons and the outer core 
electrons; therefore another model which may be called 
the two-correlations model seems to be useful; exam- 
ples for its application to the explanation of structures 
of metallic phases will be given below. A proposal for 
two electron spatial correlations in a structure may be 
called a binding in it. The binding has a similarity to 
the set of atomic radii; it leads to a set of electron 
distances and correlation types (Schubert, 1964) which 
may be used during the analysis of a structure and 
for assessing the energetic preference of a structure. 

Every spatial correlation causes an electrostatic field 
in the crystal structure. This field is well known in the 
ionic structures, where each cation has a positive 
charge and each anion a negative charge. But besides 
these monopole charges, dipole and higher charges also 
have an influence on the structure. However they have 
not been considered until now, as the spatial correla- 
tions of the electrons were not available. The crystal 
structure (as already mentioned) tends to minimize the 
energy of the electrostatic field, if the volume, entropy, 
and mole numbers are held constant. 

The method of finding the binding is a natural ex- 
tension of the method of finding atomic radii. From 
the structures of the elements a system of electron dis- 
tances may be derived (Schubert, 1964, 1974). Then 
we seek commensurabilities between an electron lat- 
tice and the crystal lattice, making use of the occupancy 
rules and the rule that the electron distances form 
smooth functions of the composition in a mixture. 
Many interesting relations revealed by spatial correla- 
tions indicate that the correlations model expresses 
real features of the density matrix. A direct proof of 
the reality of the correlations has yet to be worked out; 
to seek it one should study variations of the tails of 
crystal reflexions, as the correlations are commensu- 
rable to the crystal and have a periodicity radius of 
50 to 100 N; since the outer core electrons per atom 
are more numerous than the valence electrons per atom 
the core-electron correlation should be sought first. 

In order to describe a lattice-like correlation S 
it is useful to collect the three basal vectors of the lat- 
tice -1,-2,-3"i ..l ..~ ( /=direction index of an orthogonal co- 
ordinate system) into the basal matrix al. A commen- 
surability of an A1 correlation cell a ~  to a crystal cell 
a~: is then given by the matrix product ac = aA~K, where 
K is the commensurability matrix and a t has been re- 

placed by a ;~K may be written in the form (Kin/(12,/(13; 
Kz~,K22,Kz3; K3~,K32,K33). Sometimes K is a number; 
for instance, in Cu may be assumed an A 1 correlation 
of the valence electrons, which is acu=aAxl; in such 
a case we speak of a 1-factorial commensurability 
between the two lattices. In a commensurability equa- 
tion, aA~ has generally to be distorted somewhat to 
give a whole-numbered K. 

In order to have a simple special example we con- 
sider the commensurability of the beta brass structure 
(lattice constants a,b, c) to the gamma brass structure 
(lattice constants A, B, C). The lattice matrices of both 
structures in an orthonormal coordinate system i con- 
tain the lattice vectors as columns and may be written 
(under the assumption that the lattice vectors are par- 
allel to the coordinate basal vectors) as 

B = :a t , 
0 

= : a a .  

The well-known commensurability of both structures 
then becomes: 

(i°!),0 : (i°!t0 (i°it0 
or a~=~aasKa~ or at=aaK. 

Instead of the characters fl, y the systematic designa- 
tions of the phases may be used so that the equation is 
written as acusz,s=acuzn3, where use has been made 
of the fact that K=(3 ,0 ,0 ;  0,3,0; 0,0,3) is a multiplier 
and may be written simply as 3. The well-known fact 
is that the coefficients combining the aa column vec- 
tors with one a t column vector are contained in one 
column of K. The above example gives a 3-factorial 
commensurability between the lattices of two different 
phases; in the following paragraphs factorial commen- 
surabilities are mainly considered between two differ- 
ent electron spatial correlations of one and the same 
thermodynamic phase. 

S t r u c t u r e s  o f  the  Cu  f a m i l y  

The above-mentioned simple concepts permit an ex- 
planation of many different crystal structures. Let us 
first consider the normal shear variants S of the 
Cu3Au structure near the valence electron concentra- 
tion Nr/A ~ 1 which may be interpreted as follows: 
as=acu(1,0,0;  0,1,0; 0,0,L)=aAI(1,0,0;  0,1,0; 0,0, 
L +  1), where L is called the shear length. The energy 
is minimized by the structure type (Schubert, 1964). 
The dependence of L -1 on the valence electron con- 
centration Nr/A, which follows from the above equa- 
tion, has been found experimentally (Schubert, 1964, 
1973; Sato, 1965). Further normal shear variants are 
found at a valence electron concentration Nv/A ~3,  
e.g. TiAI3 (described in Structure Reports [SR] 2, p. 
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762)* and ZrA13 (SR 7, p. 100); they correspond to the 
next higher whole-numbered commensurability of the 
valence electrons to the substructure in the basal plane: 
aTiM3=acu(1,0,0; 0,1,0; 0,0,2)=(3.85,0,0;  0,3.85,0; 
0,0,8"60)A=aAI(I,--  1,0; 1,1,0; 0,0,3"5); a z r A l 3  = 

acu(1,0,0; 0,1,0; 0 ,0 ,4)=(4.01,0,0;  0,4.01,0; 0,0, 
17.31) A = a A I ( I , -  1,0; 1, 1,0; 0,0,6.5). The numbers 
of electron places per cell are N p / C =  28 and 52 while 
the numbers of valence electrons per cell are N v / C  = 26 
and 52. This finding conforms to the rule (Schubert, 
1974) that in heavier compounds the electron lattice 
tends to full occupancy, while in less heavy compounds 
partial occupancy is more probable. The possibility of 
partial occupation of the electron correlation accounts 
for the difference in crystal structure at the same valence 
electron concentration. The electrostatic field in TiAI3 
and ZrAI3 is indicated in Fig. I by dipole vectors; only 
the dipole vectors at the minority component need to 
be considered; the observed crystal structure thus min- 
imizes the electrostatic energy. 

A structure of the ZrAI3 type is also found in the 
brass-like phase Au3Zn.h (SR 19, p. 160) but at 270°C 
the phase Au3Zn.h transforms further into a room- 
temperature phase Au3Zn. r (SR 22, p. 107) which has, 
besides the component ordering of Au3Zn.h, a dis- 
placive ordering of the atoms, which leads to a cell 
aAu3Z,.~=ac~(1, -- 1,0; 1, 1,0; 0,0,4). From the atomic 
positions in the r phase which are shown in Fig. 2 it 
may be concluded that the transformation h--> r is 
caused by the correlation of the outer core electrons 
(simply called core-electron correlation) and from the 
transformation temperatures it follows that the in- 
fluence of the core electrons is comparable to that of 

* Structure Reports are cited throughout by the letters SR 
followed by the volume number and page number. Full refer- 
ences are contained in Strukturbericht, Leipzig: Akademische 
Verlags (for volumes 1-7) and Structure Reports, Utrecht: 
Oosthoek (for volume 8 onwards). 

the valence electrons. Since the core of Zn is smaller 
than the core of Au, certain Au atoms move towards 
the Zn atoms, and this leads to the displacive trans- 
formation. The correlation of the core electrons was 
first found in the interpretation of the crystal structure 
of In and may be described by a~n=(4"598,0,0; 
0,4"598,0; 0,0,4"947) A=aA~(1, -- 1,0; 1,1,0; 0,0, 1.5) 
= aAZ(2, --2,0; 2,2,0; 0,0,3); the prime on a~2 indicates 
a core-electron correlation; it is in this case occupied 
to only ~83/100 by the outer core electrons (here d 
electrons). Applying this correlation to AusZn.r  we 
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Fig. 1. Crystal structure of TiAI3 and ZrAI3. a(TiA13)= 
(3.84,0,0; 0,3.84,0; 0,0, 8"59)/~,= aAt(l, - 1,0; 1,1,0; 
0,0,3.5), Np/C=28, Nv/C=26.  a(ZrAl3)=(4.01,0,0: 
0,4.01,0; 0,0,17"31)~ =aAl(1, -- 1,0; 1, 1,0; 0,0, 6"5), 
NpIC= 52, Nv/C= 52. 
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Fig. 2. (a) Part of the phase diagram Au-Zn. (b) Crystal structure of Au3Znl + .r D~,~,Acam, a= 5.585, b = 5.594, c= 16.648 /~, 
l/2c/4a = 1 "055. 8Au(d). 0.0.119, 8Au(e). 25.25.25, 8Au(f). 190.310.0, 8Zn(d). 0.0. 367. aAu3Zn = acn3Au (1, -- 1,0; 1,1,0; 
0,0,4)=aal( 1,-- 1,0; 1,1,0; 0,0,5)=a~z(4,0,0; 0,4,0; 0,0,1 2). aAusZn2Ga=acu3Au(2, - i,0; 2, 1,0; 0,0,2)=aA2(4,0,0; 0,2,0; 
0,0,3)=a]z(8,0,0; 0,4,0; 0,0,6). 
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find aAu3Zn.,=x(laA, -- 1,0; 1, 1,0; 0,0,5)=a~2(4,0,0; 
0, 4, 0; 0, 0, 12). The valence electron correlation of this 
proposal is heavily compressed in the direction of the 
long axis of the crystal, so that it could also be de- 
scribed by a somewhat strained A2 correlation 
aAu3Zn .r = aA2( 2, 0, 0 ; 0, 2, 0; 0, 0, 5); if the last commen- 
surability element were 6 instead of 5, we would have a 2- 
factorial commensurability between the two correlations 
which must be considered as energetically favourable. 
It could be attained if the valence electron con- 
centration were higher. In fact in the mixtures Au-Zn 
and A u - Z n - G a  the phases AusZn3 (SR 22, p. 107) and 
AusZnzGa (SR 22, p. 108) have been found, which may 
be interpreted as follows: aAusZn3=(11"02,0,0; 0,5"51, 
0; 0 ,0 ,33 .61)A=ac , (2 , - - l ,0 ;  2,1,0; O,O, 8)=aA~(2, 
--1,0; 2,1,0; 0,0,11)=aA2(8,0,0; 0,4,0; 0,0,24) and 
aA,sZ.m, = (10"946, 0, 0; 0,5-473,0; 0,0, 8"084)A = 
acu(2, -- 1,0; 2, 1,0; 0,0,2)=aA~(2, -- 1,0; 2, 1,0;0,0,3) 
=aA2(8,0,0; 0,4,0; 0,0,6). The latter structure is fac- 
torially commensurable because taking distortion into 
account aA~(2,- 1,0; 2,1,0; 0,0,3)=aA2(4,0,0; 0,2,0; 
0,0,3); the structure is therefore especially stable; it is 
interesting that the phases approximating to factorial 
commensurability like AusZn3 are stabilized. Also Ti3Pt 5 
(SR 33, p. 126) is isotypicwith Au5ZnzGa; the outer core 
electrons of Ti take part in the A2 correlation, con- 
trary to the observation that these electrons are often 
in an A0 correlation (cubic primitive correlation). 

The phenomenon of factorial commensurability is 
good support for the assumption that the A2 correla- 
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Fig. 3. Crystal structure of Pt3Ge.r C ~ , , F 2 / m ,  a(Pt3Si.r)= 

(7"701,0,0; 0,7"758,0; [-0"252],0,7-754) A,=a~2(0,4,-4; 
0,4,4; 5.5,0,0). a(Pt3Ge.r)=(7"922,0,0; 0,7-768,0; 
[-0"085],0,7-768) ,~=aa2(0,4,--4; 0,4,4; 5"75,0,0). 
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Fig. 4. Structures of the Ni2Si family, a(Ni2Si)=(7.06,0,0; 
0,4.99,0; 0,0,3.72) ,~=a~z(6,0,0; 0,4,0; 0,0,3), N v / A =  
1.33. a(RhsGe3)=(5.42,0,0; 0,10.32,0; 0,0,3.96) ,~= 
a~(4,0,0"  0,8,0; 0,0,3), N v / A = I . 5 .  a(PdsGa2)=(18.39, 
0,0; 0,5"48,0; 0,0,4"08) /~=a~2(14,0,0; 0,4,0; 0,0,3)= 
aA1(6,2,0; 6,--2,0; 0,0,1). N v / A = 0 " 9 .  

tion of the outer core electrons of In also occurs in 
brass-like phases; however, a further indication of the 
A2 correlation is the existence of structures which 
show, besides a displacive superstructure of the Cu3Au 
type, a monoclinic distortion: Pt3Ge.r (SR 24, p. 116) 
and PtaSi.r (SR 29, p. 129), Fig. 3: apt3si .~= (7.701,0,0; 
0,7.758,0; [-0.252],0,7.754) /~=aAz(0,4,--4; 0,4,4; 
5"5,0,0); apt3G,.~=(7.922,0,0; 0, 7.768,0; [-0.085],0, 
7.768) N = a~z(0, 4, - 4; 0, 4, 4; 5.75, 0, 0). The bracketed 
matrix elements should be neglected for calculating the 
commensurability matrix. The shorter al axis of Pt3Si. r 
is caused by the smaller number of core electrons (as 
compared with Pt3Ge. r), which leads to a smaller num- 
ber Np,/C of core electron places per cell and there- 
fore to the smaller commensurability element 5.5. Both 
corresponding elements favour a monoclinic distor- 
tion, as they are half integer (the element 5.75 only 
when it is doubled), so that commensurability of the 
core electrons is improved by the distortion. The va- 
lence electron correlation in Pt3Ge and Pt3Si may be 
considered as 1-factorially commensurable to the crys- 
tal substructure. If this is no longer the case, as in 
PtaGa. r (Chattopadhyay & Schubert, 1975), the core- 
electron correlation is more disturbed so that the mono- 
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clinic distortion is no longer realized but only the 
tetragonal distortion which belongs to the commen- 
surability element 5.75. The monoclinic distortion may 
also be destroyed by a small substitution of Ga for Ge 
in Pt3Ge.r (Khalaff & Schubert, 1974). An even 
stronger disturbance is the loss of 3:1 stoichiometry 
in Pt3_Gal+, leading to the Cu3Au type of structure, 
where even the displacive order is destroyed; the core- 
electron correlation must be assumed as twinned into 
three directions in this case. 

A third indication for the A2 core-electron correla- 
tion is the structure of Ni2Si (SR 16, p. 123) shown in 
Fig. 4, which occurs in several metallic mixtures on the 
valence electron rich side of phases like PtsGe.r. It 
shows the commensurability: aNi2si = (7"06, 0, 0; 0, 4"99, 
0; 0,0,3"72) A=ac~( l ' 5 , - -1 ,0 ;  1.5,1,0; 0 ,0 ,1)= 
a~2(6,0,0; 0,4,0; 0,0, 3). The valence-electron com- 
mensurability is not given; it may be congruent to acu ; 
but if the major component contributes some va- 
lence electrons, an A2 correlation factorial to the core 
electrons may be assumed. Structural types like 
RhsGe3, PdsGa2, Pt2Ga.r and Ti3Pt5 belong to the 
Ni2Si family. For PdsGa2 (Khalaff & Schubert, 1974) 
it is found that apdsGaz=ac~(7,2,0; 7 , - -2 ,0 ;  0 ,0 ,1)= 
aA1(6,2,0; 6 , - -2 ,0 ;  0,0, 1)=a~2(14,0,0; 0,4,0; 0,0,3); 
this means that the valence-electron correlation spreads 
as compared with the core-electron correlation, sim- 
ilarly as in the series AusZn2Ga, AusZn3, Au3Zn. r. The 
question arises why NizSi or Pd2Ga accepts the com- 
mensurability element 3 in the direction of the shortest 
axis while phases like Cu do not. Since all valence elec- 
trons in NizSi belong to one and the same component, 
the valence-electron correlation is more easily de- 
formed than in Cu, where each valence electron be- 
longs to another atom; the core-electron correlation 
in Ni2Si may therefore go over more easily to the favour- 
able core-electron commensurability of In, than the core- 
electron correlation in Cu. A further argument is that 
the neighbouring minority atoms support the strain in 
the direction of the shortest axis. Another question is 
why in the mixture Ni-Ga is no Ni2Si-type found. This 

may be answered by remarking that the small atomic 
volume of Ni does not allow a strong displacive change 
in the structure. A third question is connected with the 
finding that Pt2Al.h is of the Ni2Si-type (Chattopa- 
dhyay & Schubert, 1975) while Pt2A1 .r (Fig. 5)(Chat- 
topadhyay & Schubert, 1976) shows a similar but 
characteristically different structure. It might be as- 
sumed that Pt2Al.h has the valence electron concen- 
tration of 1.5 and consequently a 2-factorially com- 
mensurable valence-electron correlation; at lower tem- 
peratures the electron contribution of the Pt atoms is 
decreased, so that a 2-factorially commensurable va- 
lence correlation is no longer possible; to preserve it in 
certain planes the A1 atoms move towards these planes 
and thus form a new type of superstructure. 

A T - T  branch of the Cu family occurs in mixtures 
of the kind T s -  T 1° or similar. To understand these 
structures it is useful to begin with the TiAla represen- 
tative VNi3. One finds avNi3=(3.542,0,0; 0,3-542,0; 
0,0,7.213) l k = a A 2 ( l , -  1,0; 1,1,0; 0, 0, 2.9 ~ 3) = a~2(2, 
- 2 , 0 ;  2,2,0; 0,0,6) which is a factorial commensu- 
rability between valence and outer-core electrons; as 
Np/C= 12, the correlation is not fully occupied, but 
the electrostatic energy is minimized, and the weakly 
strained substructure axial ratio la31/21all is explained. 

, eoo ®ooi  
® o0 o_0 o 

(~Ot2AI.r@ (~ 
Fig. 5. Crystal structure of Pt2Al.r. Ds,,Pmma, a=16"297±3, 

b=3"921±1, c=5"439±1 /~. 4Pt(i).075.0.788, 2Pt(e).25.0 
• 287, 2Pt(d). 0.5.5, 4Pt(j). 160.5. 047, 4Pt(j). 164.5. 549, 
2Al(b). 0.5.0, 4Al(i). 087.0. 272, 2Al(e). 25.0. 784. 
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Fig. 6. VNia family: MoPt2 (P1.2, structural type following Schubert, 1964; SR20, p. 29), a=(2.76,0,0; 0,8.30,0; 0,0,3.94) ,~= 
acu(0"5,- 1.5,0; 0.5, 1.5,0; 0,0,1)=aA0(1,--3,0; 1,3,0; 0,0,2)=a~2(2,0,0; 0,6,0; 0,0,2"83). VNia (TiAla-type), a=(3.54,0,0; 
0,3.54,0; 0,0,7.21) ,~=ao.(l,0,0; 0,1,0; 0,0,2)=aA2(1,-1,0; 1,1,0; 0,0,2.9~3)=a~2(2,-2,0; 2,2,0; 0,0,6). MoNi4 (U1-4" 
SR9, p. 110), a= (5.72,0,0; 0,5.72,0; 0,0,3.56) ,~ = acu(l'5, -0.5,0; 0.5, 1.5,0; 0,0,1), binding of VNi3. --  shearplane, ~-~ shear- 
vector, --- valence-electron correlation . . . . .  core-electron correlation. 
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To preserve factorial commensurability when instead 
of a T s element a T 6 element is alloyed, Nature uses 
the mechanism of abnormal shears (Schubert, 1964) 
in MoNi4 (SR 9, p. 110) which has the commensu- 
rability a~oNi4 =acu(1.5, -0 .5 ,0;  0.5, 1.5,0; 0,0, 1). The 
shears represented in Fig. 6 lead to a tetragonal struc- 
ture, so that the factorial correlation, which remains 
the same as in VNi3, must be assumed to be twinned. 
Taking the same shear on VNi 3 with the opposite ab- 
normal shear vector leads to the structure of MoPtz 
(SR 20, p. 29). To reconcile this contractive shear with 
the increase in valence-electron concentration to the 
value 2, another type of valence-electron correlation 
must be assumed. It is found that aMoPt2=(2.765,0,0; 
0,8.296,0; 0,0,3.938) A = a c , ( 0 " 5 , - l ' 5 , 0 ;  0.5,1.5,0; 
0 ,0 ,1)=aA0(1,-3 ,0;  1,3,0; 0,0,2)=a~2(2,0,0; 0,6,0; 
0,0,2.83); the valence-electron correlation is fully oc- 
cupied and the quasi-tetragonal strain is explained by 
the core-electron correlation. Since the MoPt2 struc- 
ture also occurs in the mixture V-Ni, and is there in 

ul  ~..".25[.:~'] . ~ 5 0  "':,-. I , , ,  .7'. 
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Fig. 7. Binding in PdsAs. Pd3As (Fe3P-type), I~, a=9.986, 
c=4.836 A. 3x8Pd(g).080.109.250 .363.030.000 .164 
.220.750, 8As(g). 290.042. 500. a(PdsAs) = a~2(6, - 4,0; 
4,6,0; 0,0,3.5). 

equilibrium with a sigma phase it may be anticipated 
that the A0 correlation plays an important role in the 
Cr3Si family, which no longer belongs to the brass-like 
phases. 

If the minor component in a Cu related structure 
of the type T 5 - T  1° is a B s element instead of a T 5 
element, we find for instance the phase PdaAs (of 
Fe3P-type, SR 19, p. 237); the Fe3P structure no longer 
belongs to the Cu family, but is in close relation to 
the Cu structure. Comparison of the elementary cell 
apa3As=(9.97,0,0; 0,9.97,0; 0,0,4.82) A with aaa= 
3"89 /~ gives the core-electron commensurability 
apdaAs=aA2(6,--4,0; 4,6,0; 0,0,3"5) (Fig. 7). The com- 
mensurability element 3.5 indicates that the support 
number 'Stfitzzahl' (Schubert, 1964) of the (001)cu 
layers has changed from 4 in a Cu structure to essen- 
tially 1. The decrease of the support number with in- 
creasing valence-electron concentration has also been 
observed in morphotropies between a closest-packed 
structure and the MoSi2-type structure. Besides the de- 
crease of the support number in Pd3As a shearing is to 
be observed, not of layers, but of rods parallel to the 
aa axis; reducing this shear results in a two-layer struc- 
ture. One al x a 2 mesh should c o n t a i n - ~ =  13 atoms; 
however, 16 atoms are observed. It must therefore be 
concluded that the minority atoms are essentially in- 
terstitially inserted into the planes of the majority a- 
toms; this insertion is favoured by the small core of 
the As atoms which is effective as the valence electrons 
have diffused far away from the cores. On the other 
hand in order to have sufficient core-electron places the 
last commensurability element increases to 3.5. If we as- 
sume a 2-factorial commensurability of the valence 
electrons, we get N e / C =  52 x ~ =45.5 valence-electron 
places per cell while only 40 are needed. It must 
therefore be concluded that the valence-electron cor- 
relation is not completely occupied or that the Pd con- 
tributes some valence electrons. The difference between 
VNi3 and PdaAs lies, therefore, in the number and dis- 
tance of the outer core electrons of the minor com- 
ponent. 
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Fig. 8. Binding in VNi3 and MoNi~. 

Structures of the Mg family 

Many brass-like phases have a structure which differs 
from the Cu structure by shears of the closest-packed 
layers. Several of these so-called stacking variants of 
the Cu structure occur at the valence-electron concen- 
tration Nv/A = 1.5, so that in these representatives a 
factorial commensurability between valence electrons 
and core electrons may be assumed. Knowing that in 
heavy phases displacive structures occur more fre- 
quently than in less heavy phases as the outer core 
electrons are pressed more strongly away from the in- 
ner part in heavy atoms, we consider Au3In (SR 21, p. 
13) or MoNi3 (SR 23, p. 181), which have Nv/A = 1.5 
and crystallize in an orthorhombically distorted Cu3Sb- 
type of structure [SR 22, p. 31, formerly named by the 
representative TiCu3 which does not exist (SR 33, p. 
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152)]. aau3~,=(5"86,0,0; 0,4.74,0; 0,0,5.17) A. The 
ratio 2 × 5-17/5.86= 1.76> t/3, similar to the strained 
]a3l/lall ratio of the tetragonal shear variants of the 
Cu3Au type with Nv/A > 1.0, and the superstructure in 
the (at × a3)Au3ln plane is the same as that of TiAI3 in 
the (112)ria13 plane, which is also realized in (112)VN~3. 
It is therefore probable that the binding in Au3In (or 
MoNi3) is similar to that in VNi3. If we assume (con- 
sidering Fig. 8) that the factorially commensurable 
electron correlation is compressed somewhat in the 
direction a3(MoNi3) or, what amounts to the same, in 
the direction (a 3 -  az)a2, then the Mg type of stacking 
is favoured against the Cu type by commensurability 
of the core electrons. 

The causes for this compression should be sought 
in the following circumstances. The commensurability 
of the TiAI3 type of structures in the subtype with 
Nv/A ~ 1 is to be assumed as as,btype=a]2(2,--2,0; 
2,2,0; 0,0,6) giving Ne,/C=96 and because of 2-fac- 
torial commensurability Nv/A= 1.5; in reality Au3In 
or MoNi3 probably have a somewhat higher valence- 
electron concentration because of the abnormal va- 
lence-electron contribution of 1.15 of Au in alloys with 
a not too high valence-electron concentration. A pos- 
sibility for increasing the valence-electron concentra- 
tion is the vacancy formation, which has been found 
in the W family of structures of the brass-like phases; 
but in closest-packed structures this process is not 
energetically preferred, as the atoms cannot move to- 
wards the vacancy as in W-related structures. There- 
fore the only possibility for increasing the valence- 
electron concentration somewhat is to compress the 
electron correlation by a small amount against the crys- 
tal lattice. The exact nature of this interesting process 
must be investigated by means of the structures of all 
the known phases which display stacking variance and 
shearing of the superstructure at the same time. To 
mention only one example, it has been found that 
Au3Cd (SR 22, p. 67) has a ZrAl3-type of structure, 
while AuvsCdx3In~z (SR 22, p. 68) shows the same shear 
density of the superstructure but a stacking variation 
of the type chhchhchh. As may be seen in Fig. 8 the 
shear density of 4 ! may be achieved when the correla- 
tions are rotated about the a, (MoNi3) axis by 11°; 
in this case the core-electron commensurability fa- 
vouring the Mg-type stacking is very nearly attained; 
in the mixture Au-Mg (SR 30, p. 112) similar results 
are found: Aus0Mg20 (ZrA13-type) and Auv6Mg24 (SR 
30, p. 58) and Auv4Mg26 (SR 30, p. 57) show stacking 
variants with the superstructure shear density ¼. Evi- 
dently the Mg-type stacking is the valence-electron- 
rich end of the closest-packed brass-like phases. The 
weak orthorhombicity found in Au3In and MoNi3 may 
be destroyed by a disorder of the component atoms, 
so that hexagonal structures appear, the typical epsilon 
brass phases, in which no superstructure and no sheared 
superstructure exists. Comparing these phases with the 
correlation proposed for the superstructures with shear 
density ¼ we find 5 layers of the core-electron correla- 

tion per substructure a3 axis. It is probable, that this 
is a preferential commensurability, so that further in- 
crease in valence-electron concentration is reached by 
straining the structure in the basal plane, so that the 
[a3l/la~[ axial ratio is decreased with increasing valence- 
electron concentration in agreement with observation 
(L6hberg, 1949; Schubert, 1964). It might be possible 
that the loss of orthorhombicity is connected with a 
transition of the core-electron correlation from the A2 
type to the C 11 type, which is a tetragonally compressed 
A2 type leading to hexagonal (110)a 2 planes. 

Structures  of  the W family  

The extended structural material of the Cu and Mg 
family has allowed the analysis of the spatial correla- 
tions of the electrons in the members of that family. 
It is therefore desirable to analyse similarly the W 
family which is, in brass-like alloys, neighboured to 
the Cu and Mg family. We cannot hope to find the 
true correlation considering the simple structures like 
the CsC1 structure of beta brass, since the electron cor- 
relations in such phases are presumably twinned. Fol- 
lowing Hume-Rothery, the CuZn-type phases are stable 
at the valence-electron concentration Nv/A = 1.5. How- 
ever this valence-electron concentration is also favour- 
able for 2-factorial commensurability of the electron 
correlations, for at an occupation ratio (Schubert, 
1964) of 0.83 in the core-electron correlation we have 
Ne,/A = 12 and consequently Nv/A =-~= 1.5. Since the 
type of the core-electron correlation is not strongly in- 
fluenced by the crystal structure, we have to expect an 
A2 correlation of the core-electrons and because of the 
factorial commensurability also an A2 correlation of 
the valence electrons. It is easily seen that such a cor- 
relation with the appropriate electron distances is not 
well commensurable to the crystal cell of CuZn. We 
must therefore look for displacive variants, e.g. for 
AgzZn.r (SR 15, p. 120). In the cell aAgzZ,.,=([1,0,0; 
-½,1/3/2,0] 7.64; 0,0,2.82) r A=aNiAs(I,1,0 ; --1,2,0; 
0,0,0.5) are 9 atoms and to fit into it an A2 correlation 
we take advantage of the cell aazh = aAz(- 1,0, 1 ; 0, 1,1 ; 
1, - 1, 1)R where R is an appropriate rotation. We find 
aAg2zn.r=aAz~(4,0,0; 0,4,0; 0,0, 1.21 ~ 1.17) so that 
Np,/A = 12"4 and N,/A = 1.55 if 2-factorial commensu- 
rability is realized. The value Np/A = 1"55 does not fit 
very well the reported, but not very definite, homoge- 
neity range Ag63...48Zn37...52, but fits fairly well to the 
phase Ag70Ga30, which is isotypic. It seems remarkable 
that the last commensurability element is not a whole 
number; but a structure Au7Ga2.h has been analysed 
(Frank, 1971), which shows a tripled a3 axis: aAu7Ga2" h 
= ([1,0,0;--½,1/3/2,017"724;0,0,8"751) r A = a~2,,(4, 0, 0; 
0,4,0; 0,0,3.7~3.5) and for which factorial commen- 
surability also applies. An earlier assumed C 11 corre- 
lation (Frank, 1971) is less satisfactory. 

The structure of Ag,Zn.r  is similar to the structure 
of FezP (SR 23, p. 88) and therefore to NiAs (SR 1, 
p. 84); Fe,P may be considered as displacive and a dis- 
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torted variant of the W structure. The minority com- 
ponent of FezP has a great valence-electron contribu- 
tion; therefore its core is relatively small and enters 
into a triangle of the major component layers parallel 
to the basal plane, so that the structure goes over from 
a W-like three-layered structure into a two-layered 
structure. The analysis of the structural distances leads 
to the binding (e.g. for Pd2Ge) apd2Ge=([l,0,0; 
-½-,1/3/2,0] 6.71; 0,0,3.41) r /~:aNiAs(1, 1,0; - 1,2,0; 
0,0,0.5)=a]zh(2,2,0; - 2 , 4 , 0 ;  0,0,1"5)=aAzh(1,1,0; 
--1,2,0; 0,0,0"75). The electron correlations are fac- 
torially commensurable, but the commensurability in 
the basal plane is different from that in Ag2Zn: one 
finds Ne,/A(Ag2Zn)= 12.4 and Ne,/A(Pd2Ge)= 12.0. 
Perhaps these numbers are an argument for the struc- 
tural difference AgzZn. . .FezP;  another argument is 
contained in the fact that all valence electrons are con- 
tributed by the minor component in Fe2P; since the 
minor atoms tend toward a most uniform distribu- 
tion in the structure because of the valence-electron cor- 
relation, there is a considerable strain in the a3 direc- 
tion. 

There are other superstructures of the W structure, 
for instance (Heinrich & Schubert, 1975) apdl2Ga2Ge5 = 
aN,As(I,2,0; --2,3,0; 0,0,0"5)=([1,0,0; --0"5, l/3/2,0 ] 
9.448; 0,0,3.684) r /~=a~2~(5,0,0; 0,5,0; 0,0,1.58) 
(ThTStz-type) or (Engstr6m, 1965) aRaz0Sil3=aNiAs(l,3, 
0; --3,4,0; 0,0,0"5); these structures are caused by dif- 
ferent metric relations between the spatial correlation 
of the electrons and the crystal structure. 

What will be the commensurability for a cubic struc- 
ture G to the W cell, when the twinned correlation of 
Ag2Zn or Au7Gaz. h is made evident by displacements. 
Since the vector ( - a l  +a2)Ag2Zn has the direction of a 
face diagonal of the W structure, this diagonal must 
be tripled, i.e. aa = aw. 3, which is the famous commen- 
surability of the gamma brass phases. The gamma 
phases have therefore the (quadruply) twinned spatial 
correlation of Ag2Zn. Why then is the cell edge of the 
beta phases (e.g. CuZn) not tripled? It must be as- 
sumed that in CuZn the correlation is translationally 
twinned; this kind of twinning is possible for spatial 
correlations, for crystals it is not possible; for correla- 
tions it is no longer possible when vacancies pin the 
correlations to the crystal; in this case only angular 
twinning is possible and realized. The present spatial 
correlation model for the beta brass phases is at vari- 
ance with Hume-Rothery's (1926) first model; but this 
does not mean that Hume-Rothery's model nowhere 
applies; only for CuZn and similar phases does it not 
apply. However, the question then arises as to how 
may the Bradley & Taylor (1937) vacancy mechanism, 
which has formerly been interpreted by Hume-Rothery's 
model, be explained. In the present model it is ex- 
plained by the factorial commensurability. If this is 
energetically favourable, then an increase of valence- 
electron concentration may be attained, preserving the 
commensurability of the valence-electron correlation 
to the crystal by dropping atoms out of the cell. The 

commensurability of the electron correlations to the 
crystal favours the gamma cell and therefore also fa- 
vours numbers of vacancies characteristic for this struc- 
ture by producing more or less preferential places. 

When the valence-electron concentration increases 
over the value 1-5, then the vacancy mechanism tends 
to compress the valence-electron correlation relative to 
the core-electron correlation. This gives a stronger ten- 
sion of the valence electrons on the core-electron cor- 
relation, so that the core-electron distance increases 
with increasing Nv/A. This becomes apparent when the 
smallest core-electron distance is plotted against the 
composition of an alloy; it may lead to a new com- 
mensurability which is to be assumed in say AuGa2 
(CaF2-type) as aAuGa2--a w × 2=aA2 × 4=aA1 × 2. The 
commensurability is very good, which accounts for the 
high melting temperature of the phase; the commen- 
surability is that found in In, but because of the lower 
Nv/A of AuGa2 the substructure is of the W family; 
this commensurability has Np,/C= 8 × 16 so that a CsCl 
structure is impossible as Nd/C= 8 × 20. The valence- 
electron correlation of AuGa2 is that proposed by 
Hume-Rothery for CuZn. Several of the electron places 
are occupied by atom cores and the number Nv/C= 
8 x 3 + 4 conforms to Norbury's rule (Schubert, 1964). 
It has been shown that this correlation also applies to 
Ge and therefore to the whole diamond family which 
forms a part of the great family of anion packings 
(Schubert, 1953; Parth6, 1964). There is a rule that 
Ne,/A increases when (in a homologous series) the aver- 
age atomic weight decreases (Schubert, 1974). There- 
fore it cannot be expected that CuGa2 also has the 
CaFz structure of AuGaz. In fact it has the FeSi2.h- 
type structure (EI-Boragy & Schubert, 1972) and the 
binding acuGa2=(2"83,0,0; 0,2"83,0; 0,0,5"84) A =  
aw(1,0,0; 0,1,0; 0,0,2)=aa1(1,0,0;  0,1,0; 0 ,0 ,2)= 
acu(2, 0, 0; 0,2,0; 0, 0, 5). The a~2 correlation is here 
compressed to a C I1 correlation so that Np,/A = 13.3 
against Np,/A= 10.7 in AuGa2. The surprising value 
[a31/lall (CuGa2)=2.06 is explained by this binding. 

If AI is substituted for Ga we have a decrease in the 
number of core-electrons in the cell, which leads to 
the CuA12 structure (SR 1, p. 491) having the cell and 
binding acuAx2=(6"06,0,0; 0,6.06,0; 0,0,4.89)A,= 
aw × 2=aal x 2 =acH × 4; although the A 1 correlation 
is strongly distorted, the C ll correlation of CuGa~ is 
retained. 

Conclusion 

The two-correlations model permits an energetic ex- 
planation of the many structural phenomena which 
have been observed in brass-like alloys. Earlier models 
like that of Hume-Rothery (1926) for CuZn or that 
of Mott & Jones (1936) for the Hume-Rothery phases 
or that of Sato (1965) for the shear variants of Cu3Au 
explain only a part of the material and have not been 
generalized until now to cover the neighbouring phe- 
nomena also. It seems that the present model is less 
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narrow than the older ones and, therefore, of broader 
applicability. In fact it is concerned with the analysis 
of a kind of structure which lies beneath the crystal 
structure. The electronic structure is at present less 
exactly known than the set of atomic radii; however it 
is a natural and necessary extension of that set and it 
may be analysed by legitimate methods similar to those 
which have led to the less hidden atomic radii. 
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The Monoclinic Crystal Structure of RsCo2 (R = Pr, Nd, Sm) with the MnsC2 
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Sm5Co2 crystallizes in the monoclinic MnsC2 structure type, space group C2/c, a= 16.282 (8), b= 
6.392 (5), c=7.061 (5)/~, 17=96"6 (1) °, Z=4.  Patterson method, counter technique, absorption correc- 
tion, least-squares refinement. R = 0.07 for 664 independent reflexions. PrsCo2 and NdsCo2 are isostruc- 
tural with SmsCo2. This series is related to SmaCo with the Fe3C structure type. All rare-earth atoms are at 
the corners of regular trigonal prisms centred by Co atoms. The trigonal prisms are arranged in zigzag 
chains as in FeB and Fe3C, but in Sm5Co2 the chains are joined by the edges of the prisms to form 
pairs. 

Introduction 

The binary phase diagrams of Pr-Co and Nd-Co have 
been reported by Ray (1974). He showed the existence 
of phases at about 29% Co and labelled them Pr~7 
Co~3 and Nd~7 Co~3. These phases are not isotypic 
with the hexagonal ThTFe3 type which occurs with Ni 
alloys such as Pr7Ni3 and NdvNi3 (Kissel, Tsuchida & 
Wallace, 1966). Reported in the binary phase diagram 
of Sm-Co, Buschow & Van der Goot (1968), is the 
existence of a phase at 31% Co, which has been 
labelled Sm9Co 4. A powder pattern was indexed in 
terms of an orthorhombic cell, but the structure was 

* Present address: Centre Universitaire de Savoie, I.U.T. 
Annecy et Laboratoire de Magn6tisme, CNRS, Grenoble, 
France. 

not identified. The present investigation was undertaken 
on a single crystal to determine the stoichiometry of 
these phases and to verify if some predictions about the 
atomic model could be postulated from the prism 
linkage coefficient calculation (Moreau, Paccard & 
Parth6, 1976). 

Experimental 

The alloys were made from commercially available 
elements of high purity: rare earth and Co 99.9 %. The 
constituents were melted under an argon atmosphere. 
X-ray diffraction patterns of the powders in the as-cast 
conditions were taken on a Guinier-de Wolff focusing 
camera with CuKct radiation. Single crystals of 
Sm5Co2 were isolated by mechanical fragmentation 
from the crushed melt. 


